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Abstract

The three-equation cubic k—&-A4, model proposed by Craft et al. (Int. J. Heat Fluid Flow 18 (1997) 15-28) is evaluated in three-
dimensional (3-D) turbulent flows pertinent to engineering applications, especially in the automobile industry. For the computations
of complex industrial flows, a numerical scheme has been developed using the cell vertex unstructured grid method. This scheme
treats a mixture of tetrahedral, pyramidal, prismatic and hexahedral computational cells with high accuracy. The industrial flows
chosen are internal combustion (IC) engine port-cylinder flows and flows around aerodynamic bluff bodies. The model performance
in U-bend duct flows and a flow around a surface-mounted cubical obstacle is also examined. These fundamental flows include
essential features of the industrial flows presently focused on. The model performs generally satisfactorily. However, the perfor-
mance in a 3-D separating wake flow behind a bluff body suggests that the model needs further improvements. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

Since a variety of software packages for computational fluid
dynamics (CFD) have been commercialized, CFD is now
recognized as an essential tool for industrial engineers. In in-
dustrial CFD applications, an eddy viscosity model (EVM) is
widely applied to account for turbulence. This is especially true
in three-dimensional (3-D) flow computations because its
computational requirements are reasonable in terms of costs
and memories.

However, the validation of the standard linear EVMs, is
now well established and many anomalies corresponding to the
linear stress—strain relation are recognized. The typical short-
comings are found in stagnation flows, swirling flows, flows
driven by turbulence and flows near curved boundaries. In
order to remove some of these with a reasonable extra load,
the use of a nonlinear stress—strain relation has been focused
on, particularly in the last decade (e.g. Myong and Kasagi,
1990; Rubinstein and Barton, 1990; Gatski and Speziale, 1993;
Shih et al., 1995). Most of them are quadratic EVMs and many
of the low Reynolds number versions, however, still employ a
parameter of wall distance for introducing near wall effects
(e.g. Myong and Kasagi, 1990; Abe et al., 1997). Such a
topographical parameter is hard to be defined in complicated
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flow fields and thus undesirable to be used in the model ex-
pressions.

Since it is one of the rare models totally free from the to-
pographical parameters, the k—e-4, cubic EVM of Craft et al.
(1997) may be suitable for complicated industrial flows though
it requires to solve the third transport equation for 4, which is
the second invariant of the anisotropic Reynolds stress tensor.
Moreover, the cubic EVM is promising in industrial flows,
since the cubic terms have sensitivity to streamline curvature
(Suga, 1995; Craft et al., 1996) which is essential in most 3-D
flow fields. In fact, the k—e-4, model showed many encour-
aging validation results (Craft et al., 1997; Chen et al., 1998a,b;
Barakos and Drikakis, 2000). However, all of the flows tested
were essentially 2-D. Therefore, the present study focuses on
the model validation in 3-D industrial flows pertinent to the
automobile engineering.

In designing the intake-port of an internal combustion (IC)
engine, its curvature ratio is one of the important parameters.
It is a factor to determine the total engine height and signifi-
cantly affects the gas discharge rate. In a strong curvature case,
a separation bubble appears along the suction side of the port
and effectively blocks the flow so that the gas discharge into the
cylinder reduces. Thus, curved duct flows (U-bend flows) of
Chang et al. (1983) and Cheah et al. (1994) are considered as
fundamental test cases prior to computations of the IC engine
port-cylinder flows of Kawazoe (1993).

As for the aerodynamic design of an automobile, one of the
crucial parameters for the drag performance is the slant angle
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Notation S, S = (0U;/ox;) + (0U;/0x;), t4/8;8:/2
u;, U;  fluctuating and mean velocity components
a; anisotropic stress (= wu; /k — 2/35;) Ul Reynolds stress N
stress flatness parameter [= 1 — (aya; — a;a;ax)] U, Ue  bulk and centre-line velocities
A,,A5  the second and the third invariants of anisotropic X; coordinate direction
stress (= a;;ay, a;;aay) y specific heat ratio

Cp drag coefficient 0y Kronecker’s delta

Cy discharge coefficient €& dissipation rate of k, & — 2v(dv/k/0x; ) (0v/k /dx;)

D duct height or port diameter v,V kinematic viscosity, kinematic eddy viscosity

H bluff body or obstacle height ¢,n, ¢ local coordinate directions

k turbulence energy P fluid density

/ turbulent length scale (= k' /¢) T turbulent time scale (= k/¢)

R,Rc  port and duct bend radii ¢ _  variable

Re bulk Reynolds number Q;,Q = (0U;/0x;) — (OU;/0x;), 14/€2;€2;;/2

R, turbulent Reynolds number [= &?/(vE)]
of the back window (Ahmed et al., 1984). Due to the size of the D4, 1 ~
flow separation induced by the slant, the drag coefficient Dr %(2[1’/ Dy = 2P + 2ayPy — ArPu + 2aydy;
changes significantly. Hence, flows around bluff bodies with a — 2a;65) + Arr), (3)
slant back of Maeda et al. (1990) are selected for the valida- ’
tion. Since predicting 3-D separating wake flows is important where Z;;,P;, ¢; and ¢; are the diffusive transport, shear

for such a flow computation, a flow around a cubical obstacle
(Martinuzzi et al., 1993) is also considered as a further test
case.

For the computations of these complex 3-D flows, a CFD
code is newly developed in the present study using the cell
vertex collocated unstructured grid method. This code works
on a mixture of tetrahedral, pyramidal, prismatic and hexa-
hedral computational cells with high accuracy. Thus, this pa-
per also describes some new aspects of the discretization
method on unstructured grids.

2. Turbulence model

In the eddy viscosity modelling, the stress—strain relation
may be written as

2
3
where v (= ¢,k* /) is the kinematic eddy viscosity and Hot;; is
the higher-order term comprising the products of S;; and €;;.
The k—&—A4, cubic EVM of Craft et al. (1997) introduces up to

the cubic-order terms, and thus Hot;; may be written in the
following form:

it =

5,‘jk — V[S,'/' + HOtl'j, (1)

Hot;; = ey t(SiSky — 3SuSkdiy) + cont(QuSky + QuSii)
+ e (Qu Qi — 1QuQudy;) + can (SQy + S 1) Sk
+ sV (1 QumSmj + SitQunRuj — 21 QRunQRuid7)
+ 6V T3Sy Sk Sk + e TSy Qu Q- (2)

As shown in Table 1, the model coefficients include the de-
pendency of 4, through the function of #,. Note that the ¢ and
c; terms are essentially linear terms. There is an argument
against the use of the ¢; term since it violates realizability in
solid-body rotation (Reynolds, 1984). The coefficient ¢; was
thus designed to vanish in solid-body rotation corresponding
to the absence of S in the case (see Table 1).

The values of A, are obtained by solving its transport
equation rather than by processing the calculated Reynolds
stresses since the former approach makes solutions more stable
(Craft et al., 1997). Thus, the k—&-4, model needs to solve the
k, &€ and A, transport equations. The exact 4, equation may be
written as

production, pressure-strain correlation and dissipation terms
of wu;, respectively. In order to obtain %y, ¢,; and ¢, the re-
cent second moment modelling of UMIST is employed while
P; does not need modelling. The zero gradient condition is
used for the wall boundary condition of 4,. The model equa-
tions are summarized in Appendix A. Note that the 4, equa-
tion sometimes returns unrealizable values even though a
realizable second moment model is used to close the A4,
equation. This is simply because the nonlinear EVM is not
fully realizable. Although Suga (1995) confirmed its realiz-
ability in fundamental strain fields, the unconditional realiz-
ability condition was not discussed due to the complexity of
algebra. Hence, unrealizable values of 4, are merely clipped
during the computations as 4, = min{8/3, max(4,,0)}.

In the ¢ equation, an extra source term S, was added to re-
duce excessive length scales produced by the usual & (or ¢)
equation in stagnation regions. A slight modification has been
made to S, after the examination of preliminary results. Since it
has been found that the original term damps turbulence too
much under acceleration, the term currently used is:

S, = 2 Liexp(—R>/4)

e fo, oo (W LAY W2 T

@ 671 0x,, /| Ox, Ox, Ox,

&

} k(e — &) 7
(4)

which still keeps the effect on impinging (decelerating) flows.

3. Numerical scheme

The transport equations are discretized on unstructured
median dual control volumes using the third-order MUSCL-
type scheme (van Albada et al., 1991) for the convection terms.
The collocated grid storage arrangement is used and thus all
variables are defined at the node points. For incompressible
flow computations, SIMPLE (Patankar, 1980) or PISO (Issa,
1985) pressure correction algorithm is used while an implicit
scheme (Nagaoka and Lohner, 1997) is used for compressible
flows. One of the attractive points of the unstructured grid
method is its applicability to tetrahedral cell configurations.
However, in boundary layers, prismatic or hexahedral cells are
desirable to reduce total cell numbers. In order to joint the
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Table 1
The empirical coefficients in the cubic EVM
1 C2 Cc3 Cy Cs Ce c7
—0.05/,/fx 0.11£,/fx 042, S —0.81, 0 —0.5f. 0.5f.
TS+ Q)
Cu Ju n
- max(S'7 Q)r,
- 0.667r, [1 —exp { — 0.415exp (1.35°°) }] L1V//e{1 — 0.8exp(~R./30) | !
"
T+ 18 1+ 0.64; +0.243°
Jq Je 7y
r,, r2

n

(14 0.008672)" 404572

1+{16XP(8A§)}[I+4 exp(f(‘))}

hexahedral and the tetrahedral cells, pyramidal cells are re-
quired. Hence, the present numerical scheme is developed to
treat a mixture of tetrahedral, pyramidal, prismatic and
hexahedral cells so that it is very flexible to calculate compli-
cated 3-D fields.

3.1. Integration over a cell-vertex median dual

As Fig. 1 illustrates, a cell-vertex median dual is a polyhe-
dral control volume constructed around a node point by
connecting the mid-points of the edges, the centroids of the
cells sharing the edges, and the face-centroids shared by the
cells. This median dual control volume leads to less grid de-
pendency than a cell centred control volume since it is formed
by more surfaces where flux is evaluated. In its nature, the
surface integral by the divergence theory gives correct first-
order differentiations for linearly distributed variables over
tetrahedral cells (the piecewise linear approximation) while the
piecewise constant approximation used by the cell centred
control volume method does not. With the edge-based data
structure, the first-order differentiation of a variable ¢ over a
median dual is given as:

) 1 1 !
(@), = ol 22 (%1 + St (5)

where K corresponds to the edge /-J and Sk (8%, 8%, S%) is
the normal surface-vector of the facet crossing the edge K. The

second derivative for the diffusion terms of the transport
equations is calculated as:

o [0\ 1 I+ T,0¢|
(a_(%—»——lz R ©

K K

where 0¢/0x;|, is obtained by defining the local coordinate
system: (&,1,() as

Q| _twec o :
|, OFf dx; Onpdx, O Ox; ()

The axes &, n and {, respectively, correspond to the /-/
direction and normal directions to the vector Sy . The usual
central difference is applied between the points 7 and J for
the gradient in the ¢ direction while the averaged value
given by Eq. (5) is employed in the u and { directions.
Hence

%9 _

aé_q’).lid)h

W _ o oo

a_¢xan+¢yan+¢zan7 (8)
0p —0x ——0y -0z

a_C_ ,va_C+¢y6_C+¢za_§7

Fig. 1. Median dual control volumes: (a) 2-D; (b) 3-D (partial view).
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where

— _[(% 3
=< (= — 2.
{0 @Y
By applying the above relations and the chain rule of the
metrics:

O 0¢ | O Op | O Bf
of ox; onpox, ol ox,
Eq. (7) may be rewritten as

0p| _0¢08 o (3.2 8¢
a_xikia_éa_xi_‘—qsx’_((b-ﬁ'@_é)a_xi‘ (9)

After a moderate amount of algebra, the gradient vector
0&/0x; is expressed as

S e S S -4
a—xi_S,(/<S,(aé+S,<a£+s,<aé). (10)

Therefore, the first- and second-order differentiations can be
processed by the edge-based ordering.

Although obtaining reasonable accuracy for the integration
of tetrahedral cells in boundary layers is not always straight-
forward, the present scheme gives comparable accuracy to that
of hexahedral cells. The comparison between those two meshes
is made in a square sectioned turbulent duct flow as shown in
Fig. 2. Both the meshes consist of 10 x 81 x 41 node points
distributed nonuniformly. As shown in Fig. 2(c), the mean
velocity distributions by the two meshes are almost identical
and thus the present scheme is confirmed to have comparable
accuracy for both the mesh configurations. Note that the
turbulence model used is the k—¢-4, model.
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Fig. 2. Comparison of computational grids and results of hexahedral
and tetrahedral meshes in a square-sectioned duct flow:
hexamesh; : tetramesh.

3.2. Numerical treatments for a nonlinear EVM

In order to stabilize the numerical solutions, the following
treatments are employed in connection with the nonlinear
EVM. The momentum equation with the nonlinear EVM may
be written as:

gpuﬁ_gi( )au (P +3pk) dpHot;
9t N ax,- ! ax,' ax,' ax/ '

(11)

Some nonlinear terms can be split into two parts:
(0/x;)(I'(dU;/x;)) and the remainder. If the term under
consideration contributes to a favourable conditioning of the
linear system (typically in the case that I' is positive), as the
standard diffusion operator, it is then treated implicitly, and if
not, then explicitly.

In the pressure correction for incompressible flows, the in-
terpolation of Rhie and Chow (1983) is applied to avoid an
oscillative solution caused by the collocated grid arrangement.
The component —(dpHot;/0x;) of the third term on the rhs of
Eq. (11) needs to be treated by the same manner as the pres-
sure gradient, otherwise it also leads to pressure oscillation.

4. Applications

Since all present computations are performed by low Rey-
nolds number turbulence models, the first node points from
walls of the computational grids are carefully allocated under
unity of the wall unit or an equivalent distance.

The initial condition for the values of 4, is obtained by
processing the initial stress field by its mathematical definition.
For the initial guess of the strain and turbulence fields, results
(which are not necessarily fully converged) of the linear k—¢
EVM of Launder and Sharma (1974) (LS model hereafter) are
used.

The total CPU time required for the convergence of a
steady-state computation by the k—e-A4, model is approxi-
mately twice as long as that of the LS model though it varies in
the cases. Note that every present test flow case is in a steady-
state condition.

4.1. U-bend flows

As shown in Fig. 3, the square sectioned 180° U-bend duct
flows of two curvature ratios: Re/D = 3.357 and 0.65 (Chang

Rc/ D=0. 65

Rc/D=3.357

—A
w{l

Fig. 3. Square-sectioned 180° U-bend duct flows.
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et al., 1983; Cheah et al., 1994) are considered. In the case of
Re/D =3.357, no separation occurs whilst in the strong
curvature case of Rc/D = 0.65, a separating flow appears
along the suction side. The computational grids cover up to the
symmetry plane and, respectively, consist of 121 (streamwise)
x81(x) x 41(y) (with 1D inlet, 3D outlet tangents) and 151x
100 x 50 (with 3D inlet, 9D outlet tangents) nodes which have
been well calibrated for grid-independent computations.
(Several preliminary runs have been performed to confirm the
grid-independency.) For providing the inlet flow conditions,
separate computations of fully developed straight duct flows
have been performed.

In order to examine the prepared inlet condition, Fig. 4
compares the predictions with the experiments of the fully
developed square sectioned straight duct by Cheesewright et al.
(1990). Although the velocity component W causing the
secondary flow is underpredicted at some sections (Fig. 4(b)),
the streamwise velocity U (Fig. 4(a)) and the rms normal
stress components (Fig. 4(c)) are generally well predicted by
the k—¢-A, model. With the linear k~¢ EVM (Launder and
Sharma, 1974), one cannot obtain the W component nor the
stress anisotropy. Hence, the fully developed inlet conditions
imposed on the U-bend flows are considered to be reasonable.
(The nonlinear stress—strain relation may need to be retuned
for a better secondary flow prediction if necessary.)

s
@
05 #/D=0.08 0.15 0.25 0.35 0.4
. " : i
lo ° o °
04 °
°
° °
0.3 ° ° ° °
Q
= o o ° ° o
02 o
o o o ° o
°
0.1 ° ° 6 °, o
° 2 o
oLk, D 0¥ Y1
-0.01 0 001 -001 0 0.01-0.01 0 00I-00l 0 00!-0.01 0 00]
(b) WU,
s
0.1 0
(C) w/U., w/U,

Fig. 4. Square-sectioned straight duct flow at Re = 5000; experiments:
Cheesewright et al. (1990).

Fig. 5 shows the comparisons between the predictions and
the experiments of the U-bend flow of Rc¢/D =3.357 at
Re = 56700. Fig. 5(a) compares the streamwise mean velocity
distributions at the four sections of 8 = 45°, 90°, 130° and 177°
in the symmetry plane (2y/D = 0). Figs. 5(b)—(d) compare the
distributions of the streamwise mean velocity and the rms
normal stresses at 0 = 90°, respectively. Clearly, the k—e-A4,
model gives far better results than the linear EVM. Particu-
larly, the k—&-A4, model successfully reproduces the ‘“‘camel
back™ profiles of the streamwise velocity distributions ap-
pearing at the sections of 0 = 90° and 130°. The prediction
quality is clearly better than the traditional ASM approaches
reviewed by Iacovides and Launder (1995).

As shown in Fig. 6, the reasonable accuracy of the k—&-4,
model is also confirmed in the strong curvature case of
Rc/D =0.65 at Re =100000. The recirculating region and
recovery from it in the downstream region is reasonably well
predicted compared with the LS model. Obviously, the linear
model predicts a too weak but long recirculation. Although the
agreement is not perfect, the level of the predicted rms normal
stress of the k-4, model is generally better than the LS
model’s.

Overall, it can be said that the k—e—4, model has reasonable
sensitivity to the curvature of 3-D duct flows. This is a pref-
erable feature for predicting IC engine port flows which is the
topic of the following subsection.

4.2. IC engine port-cylinder flows

Fig. 7 illustrates the typical computational grid for the half
model of the IC engine port-cylinder flows. The presently used
grids have 370 000-400 000 hexahedral cells. A finer grid con-
sisting of twice node points has been also used though the
predicted discharge coefficient C; changes only 2%. The defi-
nition of the discharge coefficient is

. 2/y
m Y P, exit
Ce = 2Pyp ( >
analveLlifl { 0 Y- 1 PO

v [1 - (%’?)MM} }1/2., (12)

where 71, Dyave and Lyg are, respectively, the mass flow rate,
the valve diameter and the valve-lift distance. The port and
cylinder diameters are, respectively, 23 and 75 mm, and the
valve diameter D,,.. and the valve-lift distance Ly are 28 and
7 mm, respectively. A prescribed pressure difference AP =
2.67 kPa and a total pressure P, = 100.4 kPa with the stag-
nation temperature 299 K and density p, = 1.17 kg/m3 are
used. A uniform inlet flow with 5% turbulence is imposed on
the present compressible flow computations. The inlet condi-
tion of the turbulent dissipation rate is obtained through the
assumption of the inlet turbulent length-scale as 50% of the
port diameter D. The Reynolds number based on the inlet flow
and the port diameter is 91 000.

Fig. 8 shows the predicted discharge coefficient C; against
R/D compared with the experiments by Kawazoe (1993). The
predicted behaviour by the k—¢-4, model is reasonably
acceptable while the LS model lacks reliability. The discharge
rate is considered to be significantly affected by the wall fric-
tion and the separation bubble appearing along the suction
side of the port. Since the k—&-4, model predicts the U-bend
flows with satisfactory sensitivity to the curvature ratio, its
success is reasonably expected. Also, in the region between the
valve and the valve-seat where the flow is strongly accelerated,
the linear EVM tends to predict too excessive turbulence which
increases the wall friction whilst the k—&-4, model does not.
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Fig. 5. U-bend duct flow of Rc/D = 3.357 at Re = 56700.

Fig. 9 compares the velocity vectors at four sections in the
symmetry plane of the two cases of R/D = 1 and 2. Evidently,
the mean flow patterns in the cylinders are found to be cap-
tured better by the k—¢—A4, model though perfect agreement
cannot be found in such complex flow fields.

4.3. Aerodynamic bluff body flows

Fig. 10 illustrates a typical computational grid used in the
present study for incompressible flows around the aerody-
namic bluff bodies of Maeda et al. (1990) which is set 0.227H
above a floor (H: bluff body height). The grids for half models
of five base angle cases (0 = 25°, 35°, 40°, 45°, and 55°) have
311000-467 333 cells composed of all hexahedral or a mixture
of prismatic and hexahedral cells. (A finer grid consisting of

roughly twice cells has produced the drag coefficient 2%
lower.) The length and width of the bluff body are (24 1/
tan 0)H and 1.4H, respectively. The inlet uniform flow with 2%
free stream turbulence is imposed SH upstream of the leading
edge while out-flow conditions are set about at 20H down-
stream of the trailing edge. Setting the inlet turbulent
dissipation rate is made by assuming that the inlet turbulent
length-scale is 10% of the hydraulic diameter of the inlet. The
free stream boundary is set at 6.3H above the floor and
spanwise symmetry conditions are also imposed at 4.3H away
from the symmetry plane. The bulk Reynolds number based
on His 4.4 x 10°.

Fig. 11 compares predicted distributions of the vorticity w,
in the three typical cases by the k—&-4, model. Clearly, ap-
parent vortex patterns can bee seen. At 6 = 25°, there is al-



265

K. Suga et al. | Int. J. Heat and Fluid Flow 22 (2001) 259-271

g %
oS e B P pa o
[[BSel — = n o S ol
>3} o =3
Ql I % e J 2 o
S Q m 1l 1l ol il ]
IS =N 5= > ol o) ke
<] H
ol |
ol 9|
. o| 9
L= ol kle
N © o 19
) o d
o
s 7 8 X
S 4 = ©
Y
=< 7
O = °
o
H o
o o
)
o
%oo.:.

. . . . . . . . . |
R ¥ X a2 v Qe X e X S L% X a9
S =} =) S S = S S =} S S = =} =) =

q Onon
11/, ©@non)
(=]
1}
S
Q
~
FrsS
S
o ol
MAJ.V ol
ep_ck E
=< 9 un
SL3 e %
o] . Q
o o]
o] o
°© o M o
o o o
8 R O 11
X ° x < ° x < © x <
[oN] ~ S k=) ~ S =} ~ =} S
nrn

0.5

x/D

(b)

Fig. 6. U-bend duct flow of Rc/D

@

0.65 at Re = 10°.

k—e-A,

- LS

0.6
0.55

A

\

=

\

SRR

IR

A

RN

NN AAAARANAN
JANRNRLLAAAAARANRRRRAAMAAARRAAA
I1NVRRELARIRUIRRAVRVRRRRRRNR A
,,,///?——r//?ﬂ%%

\NANANANNNNE
/m%”%‘/lﬁlffl R

””, TR
\

—
=

RS

0.45

0.4

2.5

1.5
R/D

Fig. 8. Discharge coefficient at Re = 91 000.

0.5

——————

e

S

—

2
.

Ny
/Z%”%—: ALNAY
I

e
AR
———%—ﬁf
R

TR
SRR
R

W
AR
R

NN

AANNNY
aﬂﬂﬁfﬁf

e

s s

Fig. 7. Computational grid for IC engine port-cylinder flow.

2F/

appears and grows (6 = 35°). Then, the separation bubble
becomes unstable and eventually bursts when the angle ex-
ceeds the critical point (6 = 55°). According to the burst of

the separation bubble, the drag coefficient Cp (

&-A4> model predicts a tiny separation bubble). According to

most no separation bubble along the slant base (while the k-
the increase of the angle toward a critical point, (which is
about 40° suggested by the experiments), a separation bubble
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(©)

Fig. 9. Vector plots in the symmetry plane:
(c) k—¢-A4, at R/D =2; (d) LS at R/D = 2.

(pUlfA), Fp: drag; A: cross-sectional area) reduces drastically
as shown in Fig. 12.

Fig. 13 compares distributions of the pressure coefficient.
The k—e-A4, model performs generally well in the lower slant
angle case of 0 =25° though its prediction just behind the
upstream edge of the slant base is slightly lower than the ex-
periments. This is due to a small separation bubble predicted
while the experiments suggests that there is almost no sepa-
ration. In the cases of 0 = 35° and 55°, however, Figs. 13(b)
and (c) suggest that the predictions along the slant base should
be lower. Consequently, as shown in Fig. 12, the predicted
drag coefficient becomes higher at 6 = 25° but lower at § = 35°
and 55° than the experiments though the model performance is
reasonably acceptable. The linear model generates too exces-
sive turbulence which produces high friction around the
leading edge and thus its predicted drag coefficient is always
significantly higher.

Although the k—e-A4, model is reasonably useful for evalu-
ating the drag performance, some more discussions are obvi-
ously needed for separating wake flows. Due to the limited
measurements around the bluff bodies, a further discussion is
hard to be made, unfortunately. Thus, in the following sub-
section, a cubical obstacle flow is considered for the detailed
discussion on the model performance in a separating wake
flow region.

: prediction; — — — —

AATRMNN
] = j

iy

i i

— — —, ooo: Kawazoe (1993): (a) k—¢-A4, at R/D = 1; (b) LS at R/D = 1;

4.4. Cubical obstacle flow

Fig. 14 zooms up the computational grid which consists of
813856 unstructured hexahedral cells for the flow around a
cubical obstacle mounted in a channel. This test case is from
the study of Martinuzzi et al. (1993) and was also selected for a
test case of the sixth ERCOFTAC/TAHR/COST Workshop on
Refined Flow Modelling held at TU Delft, 1997. The Reynolds
number based on the bulk velocity and the cube height H is
80000. The computational region has 14H streamwise, 2H
cross-streamwise and 4.5H spanwise (from the symmetry
plane) lengths and the cube is mounted on the bottom wall 3H
downstream from the inlet. The coarser grid consisting of half
node points has been also tested. The difference between the
predicted reattachment lengths is 3%, and thus the finer grid is
used for the present discussion. To provide the inlet condition,
a separate computation for a fully developed channel flow has
been performed.

Fig. 15 compares the predicted streamwise mean velocity
distributions of the k—&-4, and the LS models. As shown in
Fig. 15(a), the flow separates but does not reattach on the top
face of the cube. The result of the k—e—4, model also does not
show a reattachment while its recirculating region is thicker at
x/H =1 even though the negative velocity at x/H = 0.5 is
rather weaker. The LS model predicts smaller separation and
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Fig. 10. Computational grid around an aerodynamic bluff body.
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Fig. 11. Vorticity w, contour lines predicted by the k—e-4, model:
black lines: positive values; grey lines: negative values.

the flow reattaches on the top face. In front of the cube, as in
Fig. 15(b), the k—e—A, predicts too strong reverse flow though
the LS model does not. This implies that the additional source
term for impinging flows: Eq. (4), of the dissipation equation is
too strong in this flow case. (Note that any additional term for
correcting excessive length-scales is not used in the presently
discussed LS model.) Behind the cube, clearly, both the models
predict too long recirculating flow compared with the experi-
ments. As Fig. 16 illustrates, the reattachment length of the k—
&4, is nearly two times as long as that suggested by the ex-
periments, which is about 2.7H.

The k—e—A4, model also tends to predict longer reattachment
lengths in some 2-D flow fields though they are not always so
bad as in this 3-D case. As shown in Fig. 17, the predicted
profiles of the back-step flow are reasonable though the pre-
dicted reattachment length is 6% longer than the experimental
value of 6.5H. (The LS model predicts 6% shorter.) In the case
of the 2-D square obstacle flow of Dimaczek et al. (1989), the

0.6 T T T T T T T
A A
A :
Q i |
) 0.4 O 5
©)
0.3 r — expt. .
OO0 k—&-A;
AAA LS k—¢
0.2 1 1 1 1 1 1 1 1

15 20 25 30 35 40 45 50 55 60
0

Fig. 12. Drag coefficient.

predicted reattachment length by the k—e-A4, model is 10H
while the experimental one is 8.1H at Re = 40000. (The LS
model predicts it as 7.8H.)

In the 3-D case, the recirculating region becomes signifi-
cantly shorter than the 2-D case due to the interaction with
typical 3-D phenomena such as a horseshoe vortex around an
obstacle. This may make the prediction difficult. In fact, all of
the moment closures including recent full second moment
closures tested in the ERCOFTAC/IAHR workshop showed
similar tendencies which were rather poor (Rautaheimo and
Siikonen, 1997). (Ironically, amongst the tested models, the
standard k— model with wall functions showed the best per-
formance.)

Obviously, improvements in the modelling for 3-D separa-
tion are strongly required. Note that the k—¢—A4, model does
not necessarily perform badly in separating flows, since as
discussed in Section 4.1, it shows reasonable performance in
the confined separating flow. Besides, a transient computa-
tional method (Kenjeres and Hanjali¢, 1999) with phase av-
eraging is also worth considering. Some unsteady effect may
need to be accounted even in computations for the steady-
state performance since this sort of flow sheds vortices peri-
odically.

5. Concluding remarks

This paper has discussed on the numerical aspects and the 3-
D application results of the k—¢-A, three-equation cubic non-
linear EVM. The following remarks summarizes the present
work.

1. A numerical scheme for complicated turbulent flows by the
collocated cell-vertex unstructured grid method is devel-
oped. This scheme treats a mixture of tetrahedral, pyrami-
dal, prismatic and hexahedral cells by the edge-based data
structure. The numerical accuracy is confirmed to be almost
identical in different cell configurations.

2. The required total CPU time for convergence by the k—¢—4,

model is approximately twice as long as that of the linear
EVM in the present 3-D flow computations. This is accept-
able for practical applications.
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Fig. 13. Pressure coefficient distributions in the symmetry plane:

experiments: Maeda et al. (1990).

3. Fairly satisfactory results are obtained by the k—&-4, model

)
N
<

—N—

w | IS
&l &
P 3
< e “
¢
<
S
o +
—
. 3
=l
+ <
= |
S s |2
~ I~
- Q
°l& +
Il
W | W~
Ia
w“_
o .S
L
L ?
=
R

>

in the square sectioned U-bend duct flows. The results are
comparable to those of a second moment closure which re-

quires far more CPU resources.
4. Due to the reasonable sensitivity to the curvature

formance of the k—&-4, model for the IC engine port

der flows is adequately satisfactory.

5. The

)

1.92

)

*

A

1-—

(
1 +0.7(1 - (1 +ie12/4oo)71)\/A_2

¢ =1+0.15

where

&—A, model predicts drag coefficients of bluff bodies

.
far better than the linear EVM though its prediction accu-

racy for the pressure coefficients is unsatisfactory when

the flow separates along the slant base.
6. The poor performance shown in the 3

separating wake

D

flow suggests that improvements in predicting 3-D separa-
tion with a horseshoe vortex are strongly required.

max(0.25,4*)

Ce2

Acknowledgements

We owe a debt of gratitude to Dr. H. Iacovides of UMIST
for his kindly providing the experimental database of the U-
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where Z,,, Py,, I1,, and ¢,, are the terms associated with dif- .
’ : k—¢—A,; o o o: Kasagi and Matsunaga (1995).

fusion, shear production, pressure correlation and dissipation,
respectively. The 2,,, is modelled as

0.8
5 Ny Py, +1,, = — A (PkAZ - Pt‘jaij)
D@ = — { (V&k/ + 022f Uiy T) _2 } (A4)
=5 E ) _ 6,2min[s/A2,0.5]\/A*f¢£(A2 +1.243) + ¢,

The source terms are expressed as (A5)



270 K. Suga et al. | Int. J. Heat and Fluid Flow 22 (2001) 259-271

Table 2
The model functions of the k—&-4, model
Iy fo Ja J: A
- ~\2 —204" ~
1 — exp(—R,/30) | —expd — R exp( ) 1—fy{1 —exp (—204"7)} : —R,
1+ 3.542 80 TP T2
A* A/ A//

Sad + (1= f1)4"

—R2
A{lexp(1+24A2>}

™ | o

o) oo -6

where the wall reflection part is

0.52842 [ dU, ol, 0/ , 0U; ol,
Py =2 ( ]u,u,,,) (a,j il ) +0.9643 — a,a; =+ o /

4 k Ox Ox; Ox 2 O,
az, ,[0U; dl, dl, oly oly
2Af,A2( LSS
X ax, T2 <©xm o G )\ 0, O,
The dissipation term is
o 2F Fy  2eds
== (1= VA - ), (A6)
where

Svfr ovk ovk Uil
F,=F 1 £
o ﬁ/( + e Ox; Ox, k )’
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=2
Fa=2.a o, ko,
The model functions are listed in Table 2.
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